Article ID Journal Published Year Pages File Type
472605 Computers & Mathematics with Applications 2011 12 Pages PDF
Abstract

An analysis was performed to study the effect of uniform transpiration velocity on free convection boundary-layer flow of a non-Newtonian fluid over a permeable vertical cone embedded in a porous medium saturated with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity, temperature, and volume fraction profiles as well as the local Nusselt and Sherwood numbers is illustrated graphically to show interesting features of the solutions.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,