Article ID Journal Published Year Pages File Type
473539 Computers & Mathematics with Applications 2008 7 Pages PDF
Abstract

In this article, we consider an application of the approximate iterative method of Dzyadyk [V.K. Dzyadyk, Approximation methods for solutions of differential and integral equations, VSP, Utrecht, The Netherlands, 1995] to the construction of approximate polynomial solutions of ordinary differential equations. We illustrate that this method allows construction of polynomials of low degree with sufficiently high accuracy by examples, and as a result such polynomials can be used in practical applications. Moreover, Dzyadyk’s method produces an a priori estimate for the polynomial approximation of the solution of Cauchy problems. For the application of this method a Cauchy problem should be rewritten as the corresponding integral equation, followed by the replacement of the integrand by its Lagrange interpolation polynomial and Picard iterations.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
,