Article ID Journal Published Year Pages File Type
473799 Computers & Mathematics with Applications 2010 19 Pages PDF
Abstract

The aim of this contribution is to present recent results on numerical modelling of non-Newtonian flow in compliant stenosed vessels with application in hemodynamics. We consider two models of shear-thinning non-Newtonian fluids and compare them with the Newtonian model. For the structure problem, the generalized string equation for radial symmetric tubes is used and extended to a stenosed vessel. The global iterative approach to approximate the fluid–structure interaction is used. Finally, we present numerical experiments for some non-Newtonian models, comparisons with the Newtonian model and the results for hemodynamic wall parameters such as the wall shear stress and the oscillatory shear index.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,