Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
473860 | Computers & Operations Research | 2010 | 7 Pages |
The capacitated centered clustering problem (CCCP) consists in partitioning a set of n points into p disjoint clusters with a known capacity. Each cluster is specified by a centroid. The objective is to minimize the total dissimilarity within each cluster, such that a given capacity limit of the cluster is not exceeded. This paper presents a solution procedure for the CCCP, using the hybrid metaheuristic clustering search (CS), whose main idea is to identify promising areas of the search space by generating solutions through a metaheuristic and clustering them into groups that are then further explored with local search heuristics. Computational results in test problems of the literature show that the CS found a significant number of new best-known solutions in reasonable computational times.