Article ID Journal Published Year Pages File Type
473953 Computers & Mathematics with Applications 2010 15 Pages PDF
Abstract

Turbulence models which can perform the transition from laminar flow to fully developed turbulent flow are of key importance in industrial applications. A promising approach is the LES WALE model, which can be used without wall functions or global damping functions. The model produces an efficient and fast scheme due to its algebraic character. Additionally, its prediction of the transition from laminar to turbulent regimes has shown promising results. In this work, the LES WALE model is investigated within the lattice Boltzmann framework. For validation purposes, various test cases are presented. First, a channel flow at a Reynolds number of 6876 is investigated. Secondly, the flow around a wall-mounted cube at various Reynolds numbers is determined. The flow regime varies from laminar, to transitional, to fully turbulent conditions at a Reynolds number of 40,000 with respect to the cube height.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,