Article ID Journal Published Year Pages File Type
474485 Computers & Mathematics with Applications 2006 12 Pages PDF
Abstract

A parametric family of iterative methods for the simultaneous determination of simple complex zeros of a polynomial is considered. The convergence of the basic method of the fourth order is accelerated using Newton's and Halley's corrections thus generating total-step methods of orders five and six. Further improvements are obtained by applying the Gauss-Seidel approach. Accelerated convergence of all proposed methods is attained at the cost of a negligible number of additional operations. Detailed convergence analysis and two numerical examples are given.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)