Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
474783 | Computers & Operations Research | 2009 | 10 Pages |
In this paper we consider a location-optimization problem where the classical uncapacitated facility location model is recast in a stochastic environment with several risk factors that make demand at each customer site probabilistic and correlated with demands at the other customer sites. Our primary contribution is to introduce a new solution methodology that adopts the mean–variance approach, borrowed from the finance literature, to optimize the “Value-at-Risk” (VaR) measure in a location problem. Specifically, the objective of locating the facilities is to maximize the lower limit of future earnings based on a stated confidence level. We derive a nonlinear integer program whose solution gives the optimal locations for the p facilities under the new objective. We design a branch-and-bound algorithm that utilizes a second-order cone program (SOCP) solver as a subroutine. We also provide computational results that show excellent solution times on small to medium sized problems.