Article ID Journal Published Year Pages File Type
474798 Computers & Operations Research 2009 19 Pages PDF
Abstract

This paper proposes a hybrid metaheuristic for the minimization of makespan in permutation flow shop scheduling problems. The solution approach is robust, fast, and simply structured, and comprises three components: an initial population generation method based on a greedy randomized constructive heuristic, a genetic algorithm (GA) for solution evolution, and a variable neighbourhood search (VNS) to improve the population. The hybridization of a GA with VNS, combining the advantages of these two individual components, is the key innovative aspect of the approach. Computational experiments on benchmark data sets demonstrate that the proposed hybrid metaheuristic reaches high-quality solutions in short computational times. Furthermore, it requires very few user-defined parameters, rendering it applicable to real-life flow shop scheduling problems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,