Article ID Journal Published Year Pages File Type
4752259 Biomaterials 2017 11 Pages PDF
Abstract

The development of effective therapies to control methicillin-resistant Staphylococcus aureus (MRSA) infections is challenging because antibiotics can be degraded by the production of certain enzymes, for example, β-lactamases. Additionally, the antibiotics themselves fail to penetrate the full depth of biofilms formed from extracellular polymers. Nanoparticle-based carriers can deliver antibiotics with better biofilm penetration, thus combating bacterial resistance. In this study, we describe a general approach for the construction of β-lactam antibiotics and β-lactamase inhibitors co-delivery of nanoantibiotics based on metal-carbenicillin framework-coated mesoporous silica nanoparticles (MSN) to overcome MRSA. Carbenicillin, a β-lactam antibiotic, was used as an organic ligand that coordinates with Fe3+ to form a metal-carbenicillin framework to block the pores of the MSN. Furthermore, these β-lactamase inhibitor-loaded nanoantibiotics were stable under physiological conditions and could synchronously release antibiotic molecules and inhibitors at the bacterial infection site to achieve a better elimination of antibiotic resistant bacterial strains and biofilms. We confirmed that these β-lactamase inhibitor-loaded nanoantibiotics had better penetration depth into biofilms and an obvious effect on the inhibition of MRSA both in vitro and in vivo.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , ,