Article ID Journal Published Year Pages File Type
4752376 Biomaterials 2017 12 Pages PDF
Abstract
Two of the challenges for clinical implementation of nano-therapeutic strategies are optimization of tumor targeting and clearance of the nanoagents in vivo. Herein, a cell-mediated therapy by transporting 2D Bi2Se3 nanosheets within macrophage vehicles is described. The Bi2Se3 nanosheets with excellent near-infrared photothermal performance exhibit high macrophage uptake and negligible cytotoxicity thus facilitating the fabrication of Bi2Se3-laden-macrophages. Compared with bare Bi2Se3, the Bi2Se3-laden-macrophages after intravenous injection show prolonged blood circulation and can overcome the hypoxia-associated drug delivery barrier to target the tumor efficiently and dramatically enhance the efficiency of photothermal cancer therapy. The Bi2Se3-laden-macrophages possess good biocompatibility as demonstrated by the biochemical and histological analyses and furthermore, most of the materials are excreted from the body within 25 days. Our findings reveal a desirable system for highly efficient near-infrared photothermal cancer therapy.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , ,