Article ID Journal Published Year Pages File Type
4752459 Biomaterials 2017 12 Pages PDF
Abstract
Supramolecular photosensitizers (supraPSs) have emerged as effective photodynamic therapy (PDT) agents. Here, we propose the assembling capacity of supraPSs as a new strategy to construct theranostic nanoplatform with versatile functions aming at high-performance tumor therapy. By coating tirapazamine (TPZ)-loaded mesoporous silica nanoparticles (MSNs) with layer-by-layer (LbL) assembled multilayer, the versatile nanoplatform (TPZ@MCMSN-Gd3+) was obtained with the formation of supraPSs via host-guest interaction and the chelation with paramagnetic Gd3+. The TPZ@MCMSN-Gd3+ could be specifically uptaken by CD44 receptor overexpressed tumor cells and respond to hyaluronidase (HAase) to trigger the release of therapeutics. As confirmed by in vivo studies, TPZ@MCMSN-Gd3+ showed preferential accumulation in tumor site and significantly inhibited the tumor progression by the collaboration of PDT and bioreductive chemotherapy under NIR fluorescence/MR imaging guidance. Taken together, this supraPSs based strategy paves a new paradigm of the way for the construction of theranostic nanoplatform.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,