Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
475287 | Computers & Operations Research | 2010 | 11 Pages |
This paper deals with a stochastic group shop scheduling problem. The group shop scheduling problem is a general formulation that includes the other shop scheduling problems such as the flow shop, the job shop and the open shop scheduling problems. Both the release date of each job and the processing time of each job on each machine are random variables with known distributions. The objective is to find a job schedule which minimizes the expected makespan. First, the problem is formulated in a form of stochastic programming and then a lower bound on the expected makespan is proposed which may be used as a measure for evaluating the performance of a solution without simulating. To solve the stochastic problem efficiently, a simulation optimization approach is developed that is a hybrid of an ant colony optimization algorithm and a heuristic algorithm to generate good solutions and a discrete event simulation model to evaluate the expected makespan. The proposed approach is tested on instances where the random variables are normally, exponentially or uniformly distributed and gives promising results.