Article ID Journal Published Year Pages File Type
4753236 Journal of Bioscience and Bioengineering 2017 11 Pages PDF
Abstract
Various methods are used for analyzing a bacterial community. We recently developed a method for quantifying each bacterium constituting the microbiota by combining a next-generation sequencing (NGS) analysis with a quantitative polymerase chain reaction (NGS-qPCR) assay. Our NGS-qPCR method is useful for analyzing a comprehensive bacterial community because it is enables the easy calculation of the amounts of each bacterium constituting the microbiota. However, it has not been confirmed whether the estimated bacterial community obtained using this NGS-qPCR method corresponds to the results obtained using conventional methods. Accordingly, we prepared model bacterial community samples and analyzed them by several methods (NGS-qPCR, species-specific qPCR, flow cytometry, total direct counting by epifluorescent microscopy [TDC], and plate count). The total bacterial cell densities determined by the PCR-based methods were largely consistent with those determined by the TDC method. There was a difference between the amounts of each bacterium analyzed by NGS-qPCR and species-specific qPCR, although the same trend was shown by both species-specific qPCR and NGS-qPCR. Our findings also demonstrated that there is a strong positive correlation between the cell densities of a specific bacterial group in craft beer samples determined by group-specific qPCR and NGS-qPCR, and there were no significant differences among quantification methods (we tested two bacterial groups: lactic acid bacteria and acetic acid bacteria). Thus, the NGS-qPCR method is a practical method for analyzing a comprehensive bacterial community based on a bacterial cell density.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,