Article ID Journal Published Year Pages File Type
4753510 Journal of Biotechnology 2017 7 Pages PDF
Abstract

•A semi-continuous process for EPS production of terrestrial cyanobacteria was established.•EPS-productivities of Trichocoleus sociatus were 32 times higher than described in topic-related literature.•A bioactivity assay showed antibacterial effects of EPS extracts against Escherichia coli.

Biodiversity forms the basis for a large pool of potential products and productive organisms offered by terrestrial cyanobacteria. They are stuck together by EPS (extracellular polymeric substances) that can obtain antiviral, antibacterial or anti-inflammatory substances. Most stress conditions, e.g. drought, induce the production of protective EPS or biotechnological-products for pharmaceutical application. However, the growth of a phototrophic biofilm is limited under submerged conditions. Therefore, a semi-continuous process to produce EPS by cyanobacteria was developed in an aerosol-based ePBR (emerse photobioreactor) that imitates the natural habitat of terrestrial cyanobacteria.The process consists of a growth-phase (biomass production), followed by a dry-phase (EPS-production) and a consecutive extraction. The EPS-productivities of Trichocoleus sociatus (ranging from 0.03 to 0.04 g L−1 d−1) were 32 times higher than described in topic-related literature. In comparison to submerge cultivations in shaking flasks, the EPS-productivities were sevenfold higher. To ensure that the extraction solvent has no influence on cell viability, a cell-vitality-test was performed. However, no statistically significant difference between the amount of living and dead cells before and after the extraction was detected. A bioactivity assay was then performed to identify antimicrobial activity within EPS extracts from emerse and submerge cultivations. The EPS revealed an antibacterial effect against gram-negative bacteria (E. coli) which was two times higher than EPS from a submerged cultivation.

Graphical abstractDownload high-res image (182KB)Download full-size image

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,