Article ID Journal Published Year Pages File Type
4754415 Journal of Photochemistry and Photobiology B: Biology 2017 26 Pages PDF
Abstract
Candida albicans is responsible for many of the infections affecting immunocompromised individuals. Although most C. albicans are susceptible to antifungal drugs, uncontrolled use of these drugs has promoted the development of resistance to current antifungals. The clinical implication of resistant strains has led to the search for safer and more effective drugs as well as alternative approaches, such as controlled drug release using liposomes and photodynamic inactivation (PDI), to eliminate pathogens by combining light and photosensitizers. In this study, we used layer-by-layer (LBL) assembly to immobilize triclosan and acridine orange encapsulated in liposomes and investigated the possibility of controlled release using light. Experiments were carried out to examine the susceptibility of C. albicans to PDI. The effects of laser irradiation were investigated by fluorescence microscopy, atomic force microscopy, and release kinetics. Liposomes were successfully prepared and immobilized using the self-assembly LBL technique. Triclosan was released more quickly when the LBL film was irradiated. The release rate was approximately 40% higher in irradiated films (fluence of 15 J/cm2) than in non-irradiated films. The results of the susceptibility experiments and surface morphological analysis indicated that C. albicans cell death is caused by photodynamic inactivation. Liposomes containing triclosan and acridine orange may be useful for inactivating C. albicans using light. Our results lay the foundation for the development of new clinical strategies to control resistant strains.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , ,