Article ID Journal Published Year Pages File Type
4759052 Computers and Electronics in Agriculture 2017 8 Pages PDF
Abstract
The use of unmanned aerial vehicles (UAVs) as remote sensing platforms has tremendous potential for describing detailed site-specific features of crops, especially in early post-emergence, which was not possible previously with satellite images. This article describes an object-based image analysis (OBIA) procedure for UAV images, designed to map and extract information about skips in sugarcane planting rows. The procedure consists of three consecutive phases: (1) identification of sugarcane planting rows, (2) identification of the existent sugarcane within the crop rows, and (3) skip extraction and creation of field-extent crop maps. Results based on experimental fields achieved skip rates of between 2.29% and 10.66%, indicating a planting operation with excellent and good quality, respectively. The relationship of estimated versus observed skip length had a coefficient of determination of 0.97, which was confirmed by the value of the enhanced Wilmott concordance coefficient of 0.92, indicating good agreement. The OBIA procedure allowed a high level of automation and adaptability, and it provided useful information for decision making, agricultural monitoring, and the reduction of operational costs.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,