Article ID Journal Published Year Pages File Type
4764625 Computers & Chemical Engineering 2017 40 Pages PDF
Abstract
In an industrial hydrogen production facility, steam-methane reforming reactions take place inside hundreds of catalyst-filled tubes placed in a large scale, high temperature furnace. Process efficiency depends strongly on the wall temperature distribution of the ensemble of reformer tubes; a narrower distribution has a process intensification effect, by providing similar processing experience to every feedstock molecule. Such process intensification efforts require a furnace model that can predict the temperature distribution as a function of operating conditions. Currently available furnace modeling solutions are either computationally intensive, making them unsuitable for (online) optimization calculations, or empirical, having limited accuracy when wide changes in operating conditions are required. In this work, a physics-based furnace model is presented that overcomes these limitations. Empirical perturbations in a Hottel zone radiation model are proposed to capture the spatially non-symmetrical temperature distribution. The low computational time makes the model suitable for operational intensification based on reduction of temperature distribution non-uniformity.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,