Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4766475 | Electrochemistry Communications | 2017 | 16 Pages |
Abstract
Herein, the Sr2Fe1.5Mo0.5O6 (SFM) precursor solution is infiltrated into a tri-layered “porous La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)/dense LSGM/porous LSGM” skeleton to form both SFM/LSGM symmetrical fuel cells and functional fuel cells by adopting an ultra-fast and time-saving procedure. The heating/cooling rate when fabricating is fixed at 200 °C/min. Thanks to the unique cell structure with high thermal shock resistance and matched thermal expansion coefficients (TEC) between SFM and LSGM, no SFM/LSGM interfacial detachment is detected. The polarization resistances (Rp) of SFM/LSGM composite cathode and anode at 650 °C are 0.27 Ω·cm2 and 0.235 Ω·cm2, respectively. These values are even smaller than those of the cells fabricated with traditional method. From scanning electron microscope (SEM), a more homogenous distribution of SFM is identified in the ultra-fast fabricated SFM/LSGM composite, therefore leading to the enhanced performance. This study also strengthens the evidence that SFM can be used as high performance symmetrical electrode material both running in H2 and CH4. When using H2 as fuel, the maximum power density of “SFM-LSGM/LSGM/LSGM-SFM” functional fuel cell at 700 °C is 880 mW cmâ 2. By using CH4 as fuel, the maximum power densities at 850 and 900 °C are 146 and 306 mW cmâ 2, respectively.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Juan Liu, Yu Lei, Yumei Li, Jun Gao, Da Han, Weiting Zhan, Fuqiang Huang, Shaorong Wang,