Article ID Journal Published Year Pages File Type
477406 European Journal of Operational Research 2009 12 Pages PDF
Abstract

This paper considers the vehicle routing problem with pickups and deliveries (VRPPD) where the same customer may require both a delivery and a pickup. This is the case, for instance, of breweries that deliver beer or mineral water bottles to a set of customers and collect empty bottles from the same customers. It is possible to relax the customary practice of performing a pickup when delivering at a customer, and postpone the pickup until the vehicle has sufficient free capacity. In the case of breweries, these solutions will often consist of routes in which bottles are first delivered until the vehicle is partly unloaded, then both pickup and delivery are performed at the remaining customers, and finally empty bottles are picked up from the first visited customers. These customers are revisited in reverse order, thus giving rise to lasso shaped solutions. Another possibility is to relax the traditional problem even more and allow customers to be visited twice either in two different routes or at different times on the same route, giving rise to a general solution. This article develops a tabu search algorithm capable of producing lasso solutions. A general solution can be reached by first duplicating each customer and generating a Hamiltonian solution on the extended set of customers. Test results show that while general solutions outperform other solution shapes in term of cost, their computation can be time consuming. The best lasso solution generated within a given time limit is generally better than the best general solution produced with the same computing effort.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,