Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
477588 | European Journal of Operational Research | 2008 | 15 Pages |
Bilevel programming involves two optimization problems where the constraint region of the first level problem is implicitly determined by another optimization problem. This paper develops a genetic algorithm for the linear bilevel problem in which both objective functions are linear and the common constraint region is a polyhedron. Taking into account the existence of an extreme point of the polyhedron which solves the problem, the algorithm aims to combine classical extreme point enumeration techniques with genetic search methods by associating chromosomes with extreme points of the polyhedron. The numerical results show the efficiency of the proposed algorithm. In addition, this genetic algorithm can also be used for solving quasiconcave bilevel problems provided that the second level objective function is linear.