Article ID Journal Published Year Pages File Type
477996 European Journal of Operational Research 2006 22 Pages PDF
Abstract

The one-dimensional cutting stock problem (1D-CSP) and the two-dimensional two-stage guillotine constrained cutting problem (2D-2CP) are considered in this paper. The Gilmore–Gomory models of these problems have very strong continuous relaxations providing a good bound in an LP-based solution approach. In recent years, there have been several efforts to attack the one-dimensional problem by LP-based branch-and-bound with column generation (called branch-and-price) and by general-purpose Chvátal–Gomory cutting planes. In this paper we investigate a combination of both approaches, i.e., the LP relaxation at each branch-and-price node is strengthened by Chvátal–Gomory and Gomory mixed-integer cuts. The branching rule is that of branching on variables of the Gilmore–Gomory formulation. Tests show that, for 1D-CSP, general-purpose cuts are useful only in exceptional cases. However, for 2D-2CP their combination with branching is more effective than either approach alone and mostly better than other methods from the literature.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,