Article ID Journal Published Year Pages File Type
478747 European Journal of Operational Research 2010 6 Pages PDF
Abstract

This paper presents a framework for finding optimal modules in a delayed product differentiation scenario. Historical product sales data is utilized to estimate demand probability and customer preferences. Then this information is used by a multiple-objective optimization model to form modules. An evolutionary computation approach is applied to solve the optimization model and find the Pareto-optimal solutions. An industrial case study illustrates the ideas presented in the paper. The mean number of assembly operations and expected pre-assembly costs are the two competing objectives that are optimized in the case study. The mean number of assembly operations can be significantly reduced while incurring relatively small increases in the expected pre-assembly cost.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,