Article ID Journal Published Year Pages File Type
479020 European Journal of Operational Research 2008 14 Pages PDF
Abstract

Resource portfolio planning optimization is crucial to high-tech manufacturing industries. One of the most important characteristics of such a problem is intensive investment and risk in demands. In this study, a nonlinear stochastic optimization model is developed to maximize the expected profit under demand uncertainty. For solution efficiency, a stochastic programming-based genetic algorithm (SPGA) is proposed to determine a profitable capacity planning and task allocation plan. The algorithm improves a conventional two-stage stochastic programming by integrating a genetic algorithm into a stochastic sampling procedure to solve this large-scale nonlinear stochastic optimization on a real-time basis. Finally, the tradeoff between profits and risks is evaluated under different settings of algorithmic and hedging parameters. Experimental results have shown that the proposed algorithm can solve the problem efficiently.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,