Article ID Journal Published Year Pages File Type
480539 European Journal of Operational Research 2010 17 Pages PDF
Abstract

Two-sided assembly lines are often designed to produce large-sized products, such as automobiles, trucks and buses. In this type of a production line, both left-side and right-side of the line are used in parallel. In all studies on two-sided assembly lines, the task times are assumed to be deterministic. However, in real life applications, especially in manual assembly lines, the tasks may have varying execution times defined as a probability distribution. The task time variation may result from machine breakdowns, loss of motivation, lack of training, non-qualified operators, complex tasks, environment, etc. In this paper, the problem of balancing two-sided assembly lines with stochastic task times (STALBP) is considered. A chance-constrained, piecewise-linear, mixed integer program (CPMIP) is proposed to model and solve the problem. As a solution approach a simulated annealing (SA) algorithm is proposed. To assess the effectiveness of CPMIP and SA algorithm, a set of test problems are solved. Finally, computational results indicating the effectiveness of CPMIP and SA algorithm are reported.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
,