Article ID Journal Published Year Pages File Type
482279 European Journal of Operational Research 2010 14 Pages PDF
Abstract

Capacity planning in the reverse channel of closed-loop supply chains (CLSCs) involves complex issues due to the different lifecycles of product offerings in combination with the variability regarding product usage time, quality level of used products and return patterns. (Georgiadis, P., Vlachos, D., Tagaras, G., 2006. The impact of product lifecycle on capacity planning of closed-loop supply chains with remanufacturing. Production and Operations Management 15; 514–527) developed a system dynamics (SD) model to study a CLSC with remanufacturing for a single product which incorporates a dynamic capacity modeling approach. We extend this SD model for two sequential product-types under two alternative scenarios regarding the market preferences over the product-types; in the first scenario, the market is considered showing no preferences, while in the second scenario, the demand over a product-type can be satisfied only by providing units of the specific type. We study how the joint lifecycles of two product-types, entry time of the second product-type to the market and used product return patterns affect the optimal policies regarding expansion and contraction of collection and remanufacturing capacities. The results of extensive numerical investigation are tested for their statistical significance using analysis of variance (ANOVA). In the first scenario, the results show that the system performs best when the two lifecycles form a trapezoid pattern for total demand while in the second scenario, when the two lifecycles form a triangular pattern.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,