Article ID Journal Published Year Pages File Type
482448 European Journal of Operational Research 2007 18 Pages PDF
Abstract

Spatial and temporal scheduling of forest management activities is becoming increasingly important due to recent developments in environmental regulations, goals and policies. A forest planning model was developed to select activities for stands in a forested area (178,000 ha), from a set of stand-centric optimal prescriptions, to best meet a higher-level landscape objective. The forest-level management problem addressed is complex, if not impossible to solve optimally, with current computing technologies, as integer decision variables are assumed. The higher-level landscape objective is to achieve the highest even-flow of timber harvest volume. Three types of tabu search processes were examined in the model: (1) a process with 1-opt moves only; (2) a process with 1-opt moves and a region-limited 2-opt move process; and (3) a process with 1-opt moves and 10 iterations through a smaller region-limited 2-opt move process. Aspiration criteria and short-term memory were employed within tabu search in an attempt to avoid becoming trapped in local optima. While the 1-opt move process alone created solutions (forest plans) that were adequate, and contained higher average harvest volumes than the other methods, the addition of the 2-opt move processes improved the solutions generated by intensifying the search around local optima. The solutions produced using the 2-opt move processes had less variation in periodic harvest volumes across the planning horizon. While the basic 1-opt tabu search process provides adequate feasible solutions to large, complex forest planning problems, we reinforce the notion suggested, but not proven with previous research, that 2-opt neighborhoods can help improve quality of large scale forest plans generated by tabu search. The contribution of this research is the description of a process which be developed for large forest planning problems (the problem examined is at least 1 order of magnitude greater than previous research, in terms of forested stands modeled), a process that could enable one to produce more efficient forest planning solutions than one could otherwise with standard 1-opt tabu search. In addition, we describe here the use of a set of optimal stand-level prescriptions to choose from when utilizing the 2-opt process, rather than a set of clearcut periods to consider. With this in mind, this research represents a fundamentally new application of operations research techniques to realistic forest planning problems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,