Article ID Journal Published Year Pages File Type
483912 Journal of King Saud University - Computer and Information Sciences 2011 6 Pages PDF
Abstract

Association rule mining aims to extract the correlation or causal structure existing between a set of frequent items or attributes in a database. These associations are represented by mean of rules. Association rule mining methods provide a robust but non-linear approach to find associations. The search for association rules is an NP-complete problem. The complexities mainly arise in exploiting huge number of database transactions and items. In this article we propose a new algorithm to extract the best rules in a reasonable time of execution but without assuring always the optimal solutions. The new derived algorithm is based on Quantum Swarm Evolutionary approach; it gives better results compared to genetic algorithms.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
,