Article ID Journal Published Year Pages File Type
483954 Journal of King Saud University - Computer and Information Sciences 2013 18 Pages PDF
Abstract

In this paper, the Harmony Search Algorithm (HSA) is proposed to tackle the Nurse Rostering Problem (NRP) using a dataset introduced in the First International Nurse Rostering Competition (INRC2010). NRP is a combinatorial optimization problem that is tackled by assigning a set of nurses with different skills and contracts to different types of shifts, over a predefined scheduling period. HSA is an approximation method which mimics the improvisation process that has been successfully applied for a wide range of optimization problems. It improvises the new harmony iteratively using three operators: memory consideration, random consideration, and pitch adjustment. Recently, HSA has been used for NRP, with promising results. This paper has made two major improvements to HSA for NRP: (i) replacing random selection with the Global-best selection of Particle Swarm Optimization in memory consideration operator to improve convergence speed. (ii) Establishing multi-pitch adjustment procedures to improve local exploitation. The result obtained by HSA is comparable with those produced by the five INRC2010 winners’ methods.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,