Article ID Journal Published Year Pages File Type
484081 Procedia Computer Science 2016 12 Pages PDF
Abstract

Multivariate polynomial multiplication is a fundamental operation which is used in many scientific domains, for example in the optics code for particle accelerator design at CERN. We present a novel and efficient multivariate polynomial multiplication algorithm for GPUs using floating-point double precision coefficients implemented using the CUDA parallel programming platform. We obtain very good speedups over another multivariate polynomial multiplication library for GPUs (up to 548x), and over the implementation of our algorithm for multi-core machines using OpenMP (up to 7.46x).

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,