Article ID Journal Published Year Pages File Type
484818 Procedia Computer Science 2015 10 Pages PDF
Abstract

Validating online stream classifiers has traditionally assumed the availability of labeled samples, which can be monitored over time, to detect concept drift. However, labeling in streaming domains is expensive, time consuming and in certain applications, such as land mine detection, not a possibility at all. In this paper, the Margin Density Drift Detection (MD3) approach is proposed, which can signal change using unlabeled samples and requires labeling only for retraining, in the event of a drift. The MD3 approach when evaluated on 5 synthetic and 5 real world drifting data streams, produced statistically equivalent classification accuracy to that of a fully labeled accuracy tracking drift detector, and required only a third of the samples to be labeled, on average.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)