Article ID Journal Published Year Pages File Type
485121 Procedia Computer Science 2014 6 Pages PDF
Abstract

RSI is a commonly used indicator preferred by stock traders. However, even though it works well when the market is trendless, during bull or bear market conditions (when there is a clear trend) its performance degrades. In this study, we developed a trading model using a modified RSI using trend-removed stock data. The model has several parameters including, the trend detection period, RSI buy-sell trigger levels and periods. These parameters are optimized using genetic algorithms; then the trading performance is compared against B&H and standard RSI indicator usage. 9 different ETFs are selected for evaluating trading performance. The results indicate there is a performance improvement both in profit and success rates using this new model. As future work, other indicators might be modelled in a similar fashion in order to see if it is possible to find one indicator that can work under any market condition.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)