Article ID Journal Published Year Pages File Type
487102 Procedia Computer Science 2015 7 Pages PDF
Abstract

Batik is a traditional fabric of Indonesian cultural heritage. Automatic batik image classification is required to preserve the wealth of traditional art of Indonesia. In such classification, a method to extract unique characteristics of batik image is important. Combination of Bag of Features (BOF) extracted using Scale-Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) classifier which had been successfully implemented in various classification tasks such as hand gesture, natural images, vehicle images, is applied to batik image classification in this study. The experimental results show that average accuracy of this method reaches 97.67%, 95.47% and 79% in normal image, rotated image and scaled image, respectively.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)