Article ID Journal Published Year Pages File Type
488293 Procedia Computer Science 2010 6 Pages PDF
Abstract

Recommenders are central in current applications to help the user find useful information spread in large amounts of data. Most Recommenders are more effective when huge amounts of user data are available in order to calculate user similarities. In general, educational applications are not popular enough in order to generate large amount of data. In this context, rule-based Recommenders are a better solution. Meta-rules can generalize a rule-set, providing bases for adaptation. The authors present a meta-rule based Recommender as an effective solution to provide a personalized recommendation to the learner, which is a new approach in rule-based Recommender Systems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)