Article ID Journal Published Year Pages File Type
488694 Procedia Computer Science 2015 10 Pages PDF
Abstract

Batik is a traditional clothwith unique patterns applied to fabric using a wax-resist dyeing technique. Aside from preserving this rich cultural heritage, the automated recognition of Batik patterns would enable many interesting applications. This paper introduces an approach to batik pattern recognition using the Scale Invariant Feature Transform (SIFT) as a feature extraction method. The challenging issues that arise are due to the highly symmetrical and repetitive properties of batik patterns. The Hough transform, as an evidence-based method of object detection, is applied to handle mismatched keypoints resulting from symmetrical and repetitive patterns of batik. On a collection of 120 batik images generated from 20 basic batik patterns, the proposed method showsan improvement over the original SIFT matching method with an equal error rate of 8.47%.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)