| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 488706 | Procedia Computer Science | 2015 | 9 Pages |
A computational intelligence approach to system-of-systems architecting is developed using multi-objective optimization. Such an approach yields a set of optimal solutions (the Pareto set) which has both advantages and disadvantages. The primary benefit is that a set of solutions provides a picture of the optimal solution space that a single solution cannot. The primary difficulty is making use of a potentially infinite set of solutions. Therefore, a significant part of this approach is the development of a method to model the solution set with a finite number of points allowing the architect to intelligently choose a subset of optimal solutions based on criteria outside of the given objectives. The approach developed incorporates a meta-architecture, multi-objective genetic algorithm, and a corner search to identify points useful for modeling the solution space. This approach is then applied to a network centric warfare problem seeking the optimum selection of twenty systems. Finally, using the same problem, it is compared to a hybrid approach using single-objective optimization with a fuzzy logic assessor to demonstrate the advantage of multi-objective optimization.
