Article ID Journal Published Year Pages File Type
488710 Procedia Computer Science 2015 10 Pages PDF
Abstract

The Ocean Voyager exhibit residing at the Georgia Aquarium Inc. (GAI) is one of the largest reef gallon aquariums in the world, with a capacity greater than 6.2 M gallons. Reef aquariums are closed systems and must compensate by ‘turning over’ their complete volume of water many times a day through biological, chemical, and mechanical filtration. Due to the Georgia Aquarium being a non-profit organization, GAI sought to investigate ways to maximize efficiency and lower operating costs. This paper will focus on using low-cost software solutions to perform trade space analyses and optimization directed towards the Ocean Voyager exhibit and related GA Aquarium life support and energy systems.The software solution herein demonstrates a top-down System of Systems (SoS) to subsystem modeling approach that provides decision makers with interdisciplinary dashboard-level tools to visualize system design. The goal of the analysis is to provide executive level decision-making support for designing or enhancing existing complex systems and SoS. The analysis was performed as a capstone project by Georgia Tech graduate students progressing from cradle to finish in just 9 weeks to show the benefits of systems engineering to Georgia Aquarium staff. Integrating software SE tools into a single, aggregate model enables project engineers and decision makers to direct design directions with confidence.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)