Article ID Journal Published Year Pages File Type
488842 Procedia Computer Science 2014 10 Pages PDF
Abstract

In this paper we propose a series of indicators, which derive from user's interactions with mouse and keyboard. The goal is to evaluate their use in identifying affective states and behavior changes in an e-learning platform by means of non-intrusive and low cost methods. The approach we have followed study user's interactions regardless of the task being performed and its presentation, aiming at finding a solution applicable in any domain. In particular, mouse movements and clicks, as well as keystrokes were recorded during a math problem solving activity where users involved in the experiment had not only to score their degree of valence (i.e., pleasure versus displeasure) and arousal (i.e., high activation versus low activation) of their affective states after each problem by using the Self-Assessment-Manikin scale, but also type a description of their own feelings. By using that affective labeling, we evaluated the information provided by these different indicators processed from the original user's interactions logs. In total, we computed 42 keyboard indicators and 96 mouse indicators.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)