Article ID Journal Published Year Pages File Type
488927 Procedia Computer Science 2012 7 Pages PDF
Abstract

This paper proposes a framework to identify the relevant law articles consisting of sentences and range of punishments, given facts discovered in the criminal case of interest. The model is formulated as a two-stage classifier according to the concept of machine learning. The first stage is to determine a set of case diagnostic issues, using a modular Artificial Neural Network (mANN), and the second stage is to determine the relevant legal elements which lead to legal charges identification, using SVM-equipped C4.5. The integrated multi-stage model aims at achieving high accuracy of classification while reserving “arguability”. Hypothetically, mANN handles well for digesting complexity in case-level issues analysis with acceptable explanatory power and C4.5 addresses the lesser extent of contingency and provides human-interpretable logic concerning the high-level context of legal codes.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)