Article ID Journal Published Year Pages File Type
489618 Procedia Computer Science 2015 10 Pages PDF
Abstract

It is risky to invest to single or similar mutual funds because the variance of the return becomes large. Mutual funds are categorized based on the investment strategy by a company that rated funds based on performance, but the fund categories are different from its actual operations. While some previous studies have proposed methods to cluster mutual funds based on the historical performances, we cannot apply these methods to new mutual funds. In this paper, we clusters mutual funds based on the investment similarity instead of the historical performances. The contributions of this paper are: 1. To propose two new methods for classifying mutual funds based on the investment similarity, 2. To evaluate the proposed methods based on actual 551 Japanese mutual funds.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)