Article ID Journal Published Year Pages File Type
490338 Procedia Computer Science 2013 12 Pages PDF
Abstract

In this paper, we present a motion splicing technique for generating concurrent upper-body actions occurring simultaneously with the evolution of a lower-body locomotion sequence. Specifically, we show that a layered interpolation motion model generates upper-body poses while assigning different actions to each upper-body part. Hence, in the proposed motion splicing approach, it is possible to increase the number of generated motions as well as the number of desired actions that can be performed by virtual characters. Additionally, we propose an iterative motion blending solution, inverse pseudo-blending, to maintain a smooth and natural interaction between the virtual character and the virtual environment; inverse pseudo-blending is a constraint-based motion editing technique that blends the motions enclosed in a tetrahedron by minimising the distances between the end-effector positions of the actual and blended motions. Additionally, to evaluate the proposed solution, we implemented an example-based application for interactive motion splicing based on specified constraints. Finally, the generated results show that the proposed solution can be beneficially applied to interactive applications where concurrent actions of the upper-body are desired.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)