Article ID Journal Published Year Pages File Type
490390 Procedia Computer Science 2013 10 Pages PDF
Abstract

A large variety of data mining and machine learning techniques are applied to a wide range of applications today. There- fore, there is a real need to develop technologies that allows data analysis while preserving the confidentiality of the data. Secure multi-party computation (SMC) protocols allows participants to cooperate on various computations while retaining the privacy of their own input data, which is an ideal solution to this issue. Although there is a number of frameworks developed in SMC to meet this challenge, but they are either tailored to perform only on specific tasks or provide very limited precision. In this paper, we have developed protocols for floating point arithmetic based on secure scalar product protocols, which is re- quired in many real world applications. Our protocols follow most of the IEEE-754 standard, supporting the four fundamental arithmetic operations, namely addition, subtraction, multiplication, and division. We will demonstrate the practicality of these protocols through performing various statistical calculations that is widely used in most data analysis tasks. Our experiments show the performance of our framework is both practical and promising.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)