Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4911172 | Applied Energy | 2017 | 12 Pages |
Abstract
The possibility of molten-salt freezing in pipe-flow systems is a key concern for the solar-energy industry and a safety issue in the new generation of molten-salt reactors, worthy of careful consideration. This paper tackles the problem of coolant solidification in complex pipe networks by developing a transient thermohydraulic model and applying it to the 'Direct Reactor Auxiliary Cooling System' (DRACS), the passive-safety system proposed for the Generation-IV molten-salt reactors. The results indicate that DRACS, as currently envisioned, is prone to failure due to freezing in the air/molten-salt heat exchanger, which can occur after approximately 20 minutes, leading to reactor temperatures above 900 °C within 4 hours. The occurrence of this scenario is related to an unstable behaviour mode of DRACS in which newly formed solid-salt deposit on the pipe walls acts to decrease the flow-rate in the secondary loop, facilitating additional solid-salt deposition. Conservative criteria are suggested to facilitate preliminary assessments of early-stage DRACS designs. The present study is, to the knowledge of the authors, the first of its kind in serving to illustrate possible safety concerns in molten-salt reactors, which are otherwise considered very safe in the literature. Furthermore, and from a broader prospective, the analytical tools developed in this study can also be applied to examine the freezing propensity of molten-salt flows in other complex piping systems where standard, finite element approaches are computationally too expensive.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
N. Le Brun, G.F. Hewitt, C.N. Markides,