Article ID Journal Published Year Pages File Type
4916192 Applied Energy 2017 13 Pages PDF
Abstract
The glazing façade is embraced by architects, but this configuration may result in huge energy consumption. This research proposed a new double skin façade using photovoltaic (PV) blinds as a shading device (named PVB-DSF), which could realize multi-function of power generation, solar penetration reduction and flexible daylighting control. The purpose of this comparative study is to demonstrate the superb thermal performance of PVB-DSF. Experimental rig was built at hot-summer and cold-winter zone of China. The first stage comparative study was conducted to evaluate system thermal performance under the effects of ventilation modes, PV-blind angle and PV-blind spacing. The second stage study was conducted to compare thermal performance between PVB-DSF and standard DSF. A validated numerical model was used to describe standard DSF. The results suggested the operation of natural ventilation mode and indicated the evident influence of PV-blind spacing on system performance. The comparison study further demonstrated that PVB-DSF can save about 12.16% and 25.57% of energy in summer compared with conventional DSF with and without shading blinds. The insulation performance of PVB-DSF is shown by its daily average heat transfer coefficient which was as low as 2.247.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , , ,