Article ID Journal Published Year Pages File Type
4916481 Applied Energy 2017 11 Pages PDF
Abstract
Existing energy-efficient management and development of alternative energy infrastructure are the most important issues in modern industry. The former has been mainly studied in terms of optimal design of utility supply network. The latter has been consistently researched in the field of strategic planning of future global hydrogen supply network. In this work, we develop an integrated network model of huge chemical industrial complexes to combine various utility supply networks with a global hydrogen supply network. To construct an integrated network model, the steam methane reforming process is used as a linkage between the two networks. The developed model is a two-stage stochastic mixed integer linear programming that optimizes total cost and also considers demand uncertainty about water, electricity, steam, and hydrogen that are consumed in each network. Finally, a case study in South Korea is conducted to validate the proposed model; it suggests reasonable scenarios to decision makers.
Keywords
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,