Article ID Journal Published Year Pages File Type
492028 Simulation Modelling Practice and Theory 2011 12 Pages PDF
Abstract

Allocating submeshes to jobs in mesh-connected multicomputers in a FCFS fashion can lead to poor system performance (e.g., long job waiting delays) because the job at the head of the waiting queue can prevent the allocation of free submeshes to other waiting jobs with smaller submesh requirements. However, serving jobs aggressively out-of-order can lead to excessive waiting delays for jobs with large allocation requests. In this paper, we propose a scheduling scheme that uses a window of consecutive jobs from which it selects jobs for allocation and execution. This window starts with the current oldest waiting job and corresponds to the lookahead of the scheduler. The performance of the proposed window-based scheme has been compared to that of FCFS and other previous job scheduling schemes. Extensive simulation results based on synthetic workloads and real workload traces indicate that the new scheduling strategy exhibits good performance when the scheduling window size is large. In particular, it is substantially superior to FCFS in terms of system utilization, average job turnaround times, and maximum waiting delays under medium to heavy system loads. Also, it is superior to aggressive out-of-order scheduling in terms of maximum job waiting delays. Window-based job scheduling can improve both overall system performance and fairness (i.e., maximum job waiting delays) by adopting large lookahead job scheduling windows.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,