Article ID Journal Published Year Pages File Type
492031 Simulation Modelling Practice and Theory 2011 13 Pages PDF
Abstract

The most crucial aspect of distributed real-time systems is the scheduling algorithm, which must guarantee that every job in the system will meet its deadline. In this paper, we evaluate by simulation the performance of strategies for the dynamic scheduling of composite jobs in a heterogeneous distributed real-time system. Each job that arrives in the system is a directed acyclic graph of component tasks and has an end-to-end deadline. For each scheduling policy, we provide alternative versions which allow the insertion of tasks into idle time slots, using various bin packing techniques. The comparison study, based on different workloads and system heterogeneity levels, shows that the alternative versions of the algorithms outperform their respective counterparts.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,