Article ID Journal Published Year Pages File Type
4924210 Journal of Sound and Vibration 2017 16 Pages PDF
Abstract
The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,