Article ID Journal Published Year Pages File Type
4924479 Journal of Sound and Vibration 2017 23 Pages PDF
Abstract
Equations of motion of extensible and shearable slender beams with large translational and rotational motions under external loads in three-dimensional space are first derived in a vector form. Boundary feedback controllers are then designed to ensure that the beams are practically K∞-exponentially stable at the equilibrium. The control design, well-posedness, and stability analysis are based on two Lyapunov-type theorems developed for a class of evolution systems in Hilbert space. Numerical simulations on a slender beam immersed in sea water are included to illustrate the effectiveness of the proposed control design.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,