Article ID Journal Published Year Pages File Type
492459 Simulation Modelling Practice and Theory 2015 16 Pages PDF
Abstract

This paper presents a cascade control methodology for pneumatic systems using Particle Swarm Optimization (PSO). First, experimental data is collected and used to identify the servo-pneumatic system where an Auto-Regressive Moving-Average (ARMA) model is formulated using PSO algorithm. Then, cascaded Proportional–Integral–Derivative (PID) controller with PSO tuning is proposed and implemented on real system using Hardware-In-the-Loop (HIL). The identified model is validated experimentally and the performance of the cascaded-PID controller is tested under various conditions of speed variation. Experimental results show that cascaded-PID with PSO tuning performs better than single-PID, especially in disturbance rejection (a practical challenge in industrial pneumatic systems). Results also show that cascaded-PID with PSO-tuning performs better than cascaded-PID with self-tuning in the transient and steady-state responses.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,