Article ID Journal Published Year Pages File Type
492525 Simulation Modelling Practice and Theory 2013 19 Pages PDF
Abstract

In this work, we present a three-dimensional computational fluid-dynamics model for simulating complex industrial furnaces. The focus in set on the mathematical modeling of heated solids inside the furnace. A stabilized finite element method is used to numerically solve time-dependent, three-dimensional, conjugate heat transfer and turbulent fluid flows. In order to simulate the fluid–solid interaction, we propose the immersed volume method combined with a direct anisotropic mesh adaptation process enhancing the interface representation. The method demonstrates the capability of the model to simulate an unsteady heat transfer flow of natural convection, conduction and radiation in a complex 3D industrial furnace with the presence of six conducting steel solids.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , , , , , ,